A High-Order Staggered Meshless Method for Elliptic Problems
نویسندگان
چکیده
منابع مشابه
A High-Order Staggered Meshless Method for Elliptic Problems
We present a new meshless method for scalar diffusion equations, which is motivated by their compatible discretizations on primal-dial grids. Unlike the latter though, our approach is truly meshless because it only requires the graph of nearby neighbor connectivity of the discretization points xi. This graph defines a local primal-dual grid complex with a virtual dual grid, in the sense that sp...
متن کاملAn Efficient High Order Heterogeneous Multiscale Method for Elliptic Problems
We propose an efficient heterogeneous multiscale finite element method based on a local least-squares reconstruction of the effective matrix using the data retrieved from the solution of cell problems posed on the vertices of the triangulation. The method achieves high order accuracy for high order macroscopic solver with essentially the same cost as the linear macroscopic solver. Optimal error...
متن کاملHigh-Order Multiscale Finite Element Method for Elliptic Problems
In this paper, a new high-order multiscale finite element method is developed for elliptic problems with highly oscillating coefficients. The method is inspired by the multiscale finite element method developed in [3], but a more explicit multiscale finite element space is constructed. The approximation space is nonconforming when oversampling technique is used. We use a PetrovGalerkin formulat...
متن کاملA Finite Element Method for Second Order Nonvariational Elliptic Problems
We propose a numerical method to approximate the solution of second order elliptic problems in nonvariational form. The method is of Galerkin type using conforming finite elements and applied directly to the nonvariational (nondivergence) form of a second order linear elliptic problem. The key tools are an appropriate concept of “finite element Hessian” and a Schur complement approach to solvin...
متن کاملA high-order hybridizable discontinuous Galerkin method for elliptic interface problems
We present a high-order hybridizable discontinuous Galerkin method for solving elliptic interface problems in which the solution and gradient are nonsmooth because of jump conditions across the interface. The hybridizable discontinuous Galerkin method is endowed with several distinct characteristics. First, they reduce the globally coupled unknowns to the approximate trace of the solution on el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2017
ISSN: 1064-8275,1095-7197
DOI: 10.1137/16m1055992